
Semantic Web 0 (2010) 1–10 1
IOS Press

The ICOM 3.0 Intelligent Conceptual
Modelling tool and methodology
Editor(s): Axel Polleres, DERI Galway, Ireland
Solicited review(s): Andreas Harth, AIFB, University of Karlsruhe, Germany; Stijn Heymans, SemanticBits LLC, Herndon, VA, U.S.A.;
anonymous reviewer

Pablo R. Fillottrani a, Enrico Franconi b

Sergio Tessaris b

a Universidad Nacional del Sur, and Comisión de
Investigaciones Científicas de la provincia de Buenos
Aires, Argentina
prf@cs.uns.edu.ar
b Free University of Bozen-Bolzano, Italy
{franconi,tessaris}@inf.unibz.it

Abstract. ICOM (version 3.0) is an advanced conceptual
modelling tool, which allows the user to design multiple ex-
tended ontologies. Each project can be organised into sev-
eral ontologies, with the possibility to include inter- and
intra-ontology constraints. Complete logical reasoning is
employed by the tool to verify the specification, infer implicit
facts, devise stricter constraints, and manifest any inconsis-
tency. ICOM is fully integrated with a very powerful descrip-
tion logic reasoning server which acts as a background infer-
ence engine. The intention behind ICOM is to provide a sim-
ple conceptual modelling tool that demonstrates the use of,
and stimulates interest in, the novel and powerful knowledge
representation based technologies for database and ontology
design.

Keywords: DL, OWL, ER, UML, ORM

1. Introduction

ICOM is an advanced conceptual modelling tool,
which allows the user to design multiple ER or UML
class diagrams with inter- and intra-model constraints.
Complete logical reasoning is employed by the tool
to verify the specification, infer implicit facts, devise
stricter constraints, and manifest any inconsistency.

For the ontology creation and maintenance tasks,
ICOM interface supports ontology engineers in engi-
neering ontologies that meets clear and measurable
quality criteria. Indeed, recently we observe the de-
velopment of large numbers of ontologies which have,
however, usually been developed in an ad hoc man-
ner by domain experts, often with only a limited un-
derstanding of the semantics of ontology languages.
The result is that many ontologies are of low quality
- they make poor use of the languages in which they
are written and do not accurately capture the author’s
rich knowledge of the domain. This problem becomes
even more acute as ontologies are maintained and ex-
tended over time, often by multiple authors. Poor qual-
ity ontologies usually require localised “tuning” in or-
der to achieve the desired results within applications.
This leads to further degradation in their overall qual-
ity, increases the brittleness of the applications that use
them, and makes interoperability and reuse difficult
or impossible. To overcome these problems tools are
needed which support the design and the development
of the basic infrastructure for building, merging, and
maintaining ontologies.

The leverage of automated reasoning to support the
domain modelling is enabled by a precise semantic
definition of all the elements of the class diagrams.
The diagrams and inter-model constraints are inter-
nally translated into a class- based logic formalism.
The same underlying logic enables the use of a view
definition language to specify additional constraints,
not captured at the diagram level. The conceptual mod-
elling language supported by ICOM can express:

– the standard Extended Entity-Relationship data
model or the standard UML class diagrams (we
are working on providing Object-Role modelling
ORM [5] as well), enriched with disjoint and

1570-0844/10/$27.50 c© 2010 – IOS Press and the authors. All rights reserved

2 P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology

covering constraints and definitions attached to
classes and relations by means of view expres-
sions over other classes and relationships in the
ontology;

– inter-ontology mappings, as inclusion and equiv-
alence statements between view expressions in-
volving classes and relationships possibly be-
longing to different ontologies.

The tool allows for the creation, the editing, the
managing, and the storing of several interconnected
ontologies, with a user friendly graphical interface.
The main purpose of the ICOM project is not to pro-
vide to the ontology community a robust tool poten-
tially replacing the many other tools available; we do
not claim that ICOM is currently more usable than any
of the existing conceptual modelling tools for ontology
design (such as, for example, [8,1]). ICOM is meant to
be a proof of concept, willing to showcase two main
points:

1. the effectiveness of using a class diagram graph-
ical syntax for expressing ontologies, even with
complex languages;

2. the emphasis to the use of complex automated
reasoning tasks to deduce implied facts, as op-
posed to mere subsumption (classification) and
consistency.

The two above points are novel and in our opin-
ion very important in the context of the existing on-
tology design tools and methodologies (see next Sec-
tion). Indeed ICOM proves (point 1) the feasibility and
the ease of use of a class diagram graphical syntax
for expressing ontologies, even with complex ontology
languages, by relying on the notion of views (which
roughly correspond to OCL constructs) in order to cap-
ture the (typically very few) cases where a larger ex-
pressivity than graphical class diagrams is needed.
ICOM is based on a deduction-complete notion of rea-
soning support relative to the class diagram graphi-
cal syntax (point 2). Users will see the original on-
tology graphically completed with all the deductions
making sense given the provided ontology, and ex-
pressed in the graphical class diagram language itself.
This includes checking class and relationship consis-
tency, discovering implied class and relationship inter-
relations (e.g., subsumption) or cardinality constraints,
and in general discovering any implied but originally
implicit class diagram graphical construct. Customar-
ily, ontology design tools just provide a support limited
to class subsumption and consistency.

ICOM provides a general framework to support the
typical tasks involved in such activities:

– Authoring of concept descriptions: in this task the
author wants to add a new concept description to
the ontology or modify a concept description that
was already contained in the ontology. This may
happen either in the design phase of the ontology
or during the maintenance phase. After producing
a candidate description of the concept, the author
needs to understand the implicit consequences of
his modelling and the interaction of this descrip-
tion with the other descriptions in the ontology.

– Structuring of the ontology: in this task the ontol-
ogy designer wants to improve the structure of an
ontology by inserting intermediate concepts into
the ontology diagram. He needs support to decide
where to add such concepts and how to describe
them.

ICOM is a fairly mature project, its first release has
been published in 2000 (see [7,4]). The version 3.0 of
the ICOM tool is loosely based on the ICOM tool pre-
viously released in 2000 as an Entity-Relationship ed-
itor (which had around 3,000 registered installations,
mostly in academic environments and for teaching pur-
poses in industry), and a demo of a preliminary ver-
sion was presented few years ago [3]. The founda-
tions of the user-computer interaction have been radi-
cally changed according to the experience of the first
ICOM and the research in this last decade. The sys-
tem has been completely re-implemented, using differ-
ent graphic libraries. The graphical interface has been
completely rewritten to improve the usability and in-
tuitiveness of the tool. Interoperability with other tools
is a crucial aspect; so, import and export modules have
been developed for XMI 2.x and Description Logics
based ontology languages via DIG.

The ICOM tool is written in standard Java 5.0, and it
is distributed on Linux, Mac, and Windows machines.
ICOM communicates via the DIG 1.1 protocol with a
description logic server, such as, for example, RACER.
ICOM provides an interface for importing and export-
ing ontologies in UML-XMI class diagrams format.

ICOM is available as a free download at
http://www.inf.unibz.it/~franconi/icom/

http://www.inf.unibz.it/~franconi/icom/

P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology 3

Call

Mobile Call

PhonePoint

Cell Landline

1..* destination

disjoint, covering

mOrigin

origin1

(a) Without deductions

Call

Mobile Call

PhonePoint

Cell Landline

1..* destination

disjoint, covering

mOrigin

origin1

0..1

(b) With deductions

vspace-1em

Fig. 1. First ontology design scenario.

2. Related Works

There are several ontology building tools available,
but Protégé1 is the most popular one. Protégé is a free,
open source Java-based platform from Stanford Uni-
versity. At its core, Protégé implements a rich set of
knowledge-modelling structures and actions that sup-
port the creation, visualisation, and manipulation of
ontologies in various representation formats. Protégé
can be customised to provide domain-friendly support
for creating knowledge models and entering data, and
also it can be extended by a plugin architecture for
building specific tools and applications. Protégé on-
tologies can be exported into a variety of formats in-
cluding RDF(S), OWL, and XML Schema. Protégé
popularity is based on the robustness of the platform,
the broad functionality provided by the plugin archi-
tecture, and the ample support from the community
of users. It allows two main ways of modelling on-
tologies, the Protégé-Frames editor, based on Open
Knowledge Base Connectivity protocol (OKBC), and
the Protégé-OWL editor. The Protégé OWL editor in-
cludes a visual tool, and provides means for showing
the user inferences obtained from an external OWL
reasoner, being in this sense similar to our tool. But
the concept and methodology that ICOM promotes,
combining graphical design with reasoning support, is

1http://protege.stanford.edu

missing in the Protégé-OWL editor. Editing the on-
tology is done mainly from the tree-based hierarchi-
cal representation of concepts, properties and nomi-
nals, each in a different panel. Inferences are shown
in an extra tab panel, and thus don’t have a graphical
representation. Also, this inference panel is available
only for individual concepts, not for properties. There
is no possibility of integrating different ontologies like
in ICOM’s project/model mechanism. Finally, reason-
ing usage is limited to finding super- and sub-classes
and detecting inconsistencies. On the other hand, the
Protégé-OWL editor endorses a more expressive lan-
guage, since it includes nominals and transitive and
symmetric properties.

The NeOn toolkit2 is an outcome from an European
Commission Sixth Framework Programme project,
with the goal of providing methodological and tool
support for developing and managing a new genera-
tion of semantic applications. The toolkit is an open
source, Eclipse-based multi-platform ontology engi-
neering environment, with comprehensive support for
the whole ontology engineering life-cycle. It provides
an extensive set of plug-ins covering a variety of on-
tology engineering activities, but these plugins are
quite isolated. For example, there are several Human-
Ontology interaction plugins with different techniques
for visualising ontologies and there is a Reasoner plu-

2http://neon-toolkit.org

http://protege.stanford.edu
http://neon-toolkit.org

4 P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology

gin to provide access to external reasoner. But infer-
ences are shown in a text based fashion and cannot be
visualised in the interaction plugins.

The TopBraid Composer3 is a commercial mod-
elling environment for developing ontologies in sev-
eral formats, implemented as an Eclipse plugin. It has
comprehensive support for developing, managing and
testing configurations of knowledge models, incorpo-
rating an extensible framework for developing seman-
tic client/server or browser-based applications that can
integrate disparate applications and data sources. Like
in ICOM, inferences are shown graphically in the com-
poser, but these are limited to IsAs hierarchies. No rea-
soning on associations or roles is done.

Kaon24 is an infrastructure for managing OWL-
DL, SWRL and F-Logic ontologies, jointly developed
by the Research Center for Information Technologies
(FZI), the University of Karlsruhe and the University
of Manchester. Its main feature is its own inference en-
gine, with little support in editing ontologies. On the
other hand, Ontotrack5 is a ontology authoring tool for
a subset of OWL Lite that combines a graphical lay-
out with mouse enabled editing features, but with no
reasoning support.

Other related tools are: DOME6 DERI Ontology
Management Environment; SWOOP7 from the Uni-
versity of Maryland; IIODT8 IBM Integrated Ontology
Development Toolkit; OilEd9 from the University of
Manchester; Knoodl10 from Revelytix, Inc.; Ontolin-
gua11; and Chimera12 web based services from Stan-
ford University. They all represent ontologies as a text
tree-based hierarchy of concepts, with limited or no
graphical visualisation. Reasoning usage is very re-
strictive, mostly only for concepts, and thus inferences
have little to do in helping the user designing an ontol-
ogy. Most of them are no longer under active develop-
ment.

3http://www.topquadrant.com/products/TB_
Composer.html

4http://kaon2.semanticweb.org/
5http://www.informatik.uni-ulm.de/ki/

ontotrack/
6http://dome.sourceforge.net/
7http://www.mindswap.org/2004/SWOOP/
8http://www.alphaworks.ibm.com/tech/

semanticstk
9http://oiled.man.ac.uk/
10http://www.knoodl.com
11http://www.ksl.stanford.edu/software/

ontolingua/
12http://www.ksl.stanford.edu/software/

chimaera/

3. Example User Scenarios

In this section we will show few basic common use
cases, emphasising in particular the added value of
the functionalities of ICOM. Deductions automatically
performed by the ontology editor may help the ontol-
ogy engineer in validating the design. In fact, if the de-
rived constraints make little sense to the engineer they
may help in suggesting changes, or they may show se-
rious but subtle conceptual mistakes. ICOM adopts as
a neutral language to represent ontologies UML-like
class (or ER) diagrams. The advantage of this choice
is that examples may be clear even to people who do
not have familiarity with more classical ontology lan-
guages, due to its graphical nature and to the fact that
UML class diagrams are quite widespread within com-
puter technologies. Note that we use the notation of
cardinality constraints as participation constraints as
it is customary in ER diagrams, but as opposed to the
UML standard that uses them as look-through con-
straints.

3.1. Ontology Design

Complete reasoning over expressive ontology lan-
guages supports the ontology engineer in creating and
maintaining ontologies tasks. The following examples
show the kind of insights that a reasoning enabled sys-
tem could provide during the ontology editing.

Let us consider the ontology represented by the di-
agram in Figure 1a. The ontology states that mobile
calls are a kind of calls (IsA link between entities); that
phone points are partitioned between cell points and
landline points (i.e., any phone point is either a cell
or a landline point, but not both: they form a cover-
ing and disjoint IsA hierarchy). Each call has at least
one destination phone point (mandatory participation
of cell to destination), while it has exactly one
origin phone point. Mobile calls are related to cells
through the mOrigin relationship. Finally, the binary
relationship mOrigin is included in the binary rela-
tionship origin.

Which are the consequences of the above ontology?
The system could automatically complete the diagram
in the way depicted in Figure 1b. The added constraint
states that in the above scenario it is necessarily true
that each mobile call may have an origin from at most
one cell point. In order to understand why this is true,
consider the following. The mOrigin binary relation-
ship is included in the origin binary relationship,
i.e., any pair in mOrigin is also among the pairs

http://www.topquadrant.com/products/TB_Composer.html
http://www.topquadrant.com/products/TB_Composer.html
http://kaon2.semanticweb.org/
http://www.informatik.uni-ulm.de/ki/ontotrack/
http://www.informatik.uni-ulm.de/ki/ontotrack/
http://dome.sourceforge.net/
http://www.mindswap.org/2004/SWOOP/
http://www.alphaworks.ibm.com/tech/semanticstk
http://www.alphaworks.ibm.com/tech/semanticstk
http://oiled.man.ac.uk/
http://www.knoodl.com
http://www.ksl.stanford.edu/software/ontolingua/
http://www.ksl.stanford.edu/software/ontolingua/
http://www.ksl.stanford.edu/software/chimaera/
http://www.ksl.stanford.edu/software/chimaera/

P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology 5

Call

Mobile Call

PhonePoint

Cell Landline

1..* destination

disjoint, covering

mOrigin

origin1

(a) Without deductions

Call

Mobile Call

PhonePoint

Cell Landline

1..* destination

disjoint, covering

mOrigin

origin1

??

(b) With deductions

Fig. 2. Second ontology design scenario.

in origin. Since each call participates exactly once as
first argument to the origin relationship, if I take
a generic sub class of calls, such as the class of mo-
bile calls, and a sub relationship of the origin rela-
tionship, such as mOrigin, then we can conclude that
necessarily each mobile call participates at most once
as first argument to the mOrigin relationship. Noth-
ing can be concluded about the minimum participation,
since the mOrigin relationship may not contain all
calls in the origin relationship.

Let us now consider the same diagram as Figure 1
with an additional IsA link stating that each cell point
is among the landline points (see Figure 2a). The sys-
tem is now able to conclude and present the user new
facts about the elements in the diagram (see Figure 2b).
Firstly, the cell entity is inconsistent, i.e., does not
have any instance, since the disjointness constraint in
the IsA link states that there is no element in common
between cell and landline phone points. The empty set
denoted by the cell entity is the only set which can
be at the same time disjoint and a subset of another set.
Since the phone point entity is formed by the union
of the cell and landline entities, and the cell entity is
inconsistent, the landline entity becomes equivalent to
the phone point entity. Moreover, since there is no cell
point, there is no pair in the mOrigin relationship as
well (i.e., it is inconsistent): the diagram states that any
second argument of the mOrigin relationship should
be of the cell type. The Mobile Call entity is not
inconsistent, since it may be populated by calls which

have no mOrigin at all (this is possible, since there is
no mandatory participation constraint).

Let us now add a cardinality constraint, stating that
now each mobile call should participate at least once
to the mOrigin relationship (i.e., a mandatory partic-
ipation constraint). The change results in the diagram
of Figure 3a. Now the system deduces that the mobile
call entity is inconsistent as well (see Figure 3b).

3.2. Ontology Integration and Views

In this section we introduce a scenario of usage of
the tool in the context of ontology integration by mak-
ing use of the view facility of ICOM.

Figure 4a shows two ontologies in the phase to be
integrated by the ontology engineer. The top ontol-
ogy describes concepts where information about Ital-
ian ISO certified companies is held; in particular, the
information about their contact person is specified. The
facts described by the diagram state that a company
should have at least one employee, and that it should
be involved in at least one sector. Among the em-
ployees there is the contact person of the company,
which should be unique. Moreover, the Italian com-
panies are exactly defined as those companies which
are in a country called Italy, while the ISO certified
Italian companies are exactly those Italian companies
having an ISO certification (specified as a boolean
property called isoCert). Please note the partic-
ular use of the ’slash’ “/” operator in front of the
completely intensionally defined classes—in the ontol-

6 P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology

Call

Mobile Call

PhonePoint

Cell Landline

1..* destination

disjoint, covering

mOrigin

origin1

1..*

(a) Without deductions

Call

Mobile Call

PhonePoint

Cell Landline

1..* destination

disjoint, covering

mOrigin

origin1

1..*? ? ?

(b) With deductions

Fig. 3. Third ontology design scenario.

ogy the classes Italian Company and Italian
ISO Company are completely defined by means of
the properties specified in the diagram. This is the sim-
plest case of a view defined in the ontology.

The lower ontology of Figure 4a describes a slightly
different perspective about the same domain. Still,
there are Italian companies and their contact persons
(but now without any cardinality constraint, and with-
out mentioning that contact persons of companies
should be employees), plus the specification that the
companies are either ISO certified or not—here the
ISO companies are identified by the code of their ISO
certification institution. In addition, the ontology in-
cludes the view class Sales Rep, which is com-
pletely defined by means of its attributes together with
the view expression stating that sales representative is
the range of the contacts association. Note that the
view definition can be written in any reasonable linear
ontology language, such as an OCL constraint, or an
OWL axiom, or a SQL check constraint, or first order
logic sentence. The view definition mechanism is the
hook that allows to use the full power of the ontology
language—if the user wants. Most of the ontologies
will not need to use this hook, and they will be more
directly understandable by the engineers. In the case
when subtle integration constraints have to be written,
views will come at hand, by providing an expressive
language to the engineers in a way which is perfectly
integrated with the diagrammatical paradigm proposed
here.

Figure 4a includes also the mappings between the
two ontologies. You can see that the Italian ISO com-
panies in the top ontology are declared to be the same
as the (Italian) ISO companies in the lower ontol-
ogy, and that the Italian companies in both ontologies
are declared to be equivalent as well. Moreover, the
contacts association in the lower ontology is de-
clared to specialise the homologous association in the
top ontology. Inter-ontology mappings are declared by
simply drawing directed links between pairs of classes
(or pairs of associations) belonging to different on-
tologies; these can state either equivalence, or contain-
ment, or disjointness.

Now, the whole picture seems very reasonable to
any ontology engineer; however there are interesting,
unexpected, and clarifying consequences that our de-
sign tool will automatically draw—still in a diagram-
matic fashion. These are shown in Figure 4b.

The first consequence relates to the equivalence
stated between the two Italian ISO certified company
class definitions in the two ontologies. The two classes
have a type incompatibility in the attribute isoCert:
one is declared to be a boolean value, while the other
is declared to be a string of ten characters. Indeed, the
system deduces that if such an integration has to be
taken seriously, then the two classes have to be empty
in any possible context, since an object in one con-
text which, say, represents an Italian ISO Company by
having an attribute isoCert with the value true, can
not be at the same time an instance of a class whose
isoCert is declared to be of an incompatible type

P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology 7

Company

+companyName : char[80]
+country : char[40]
+interestedExport : boolean
+isoCert : boolean
+numWorkers : int
+prodFor : enum{Man, Woman}

/Italian Company

+country : char[40] = 'Italy'

/Italian ISO Company

+isoCert : boolean = true

Sector

+description : char[80]

Employee

+name : char[80]
+role : char[80]
+staffID : char[6]

Contact Person

+email : char[40]
+fax : char[20]
+tel : char[20]

1contacts

1..* 1..*

Italian Company

+address : char[200]
+companyName : char[80]

view :
 classOf arg2 contacts

Non ISO Company

/Sales Rep

+email : char[40]
+tel : char[20]

ISO Company

+isoCert : char[10]

Contact

+email : char[40]
+tel : char[20]

-arg1 -arg2
contacts

{disjoint, complete}

(a) Without deductions

Company

+companyName : char[80]
+country : char[40]
+interestedExport : boolean
+isoCert : boolean
+numWorkers : int
+prodFor : enum{Man, Woman}

/Italian Company

+country : char[40] = 'Italy'

/Italian ISO Company

+isoCert : boolean = true

Sector

+description : char[80]

Employee

+name : char[80]
+role : char[80]
+staffID : char[6]

Contact Person

+email : char[40]
+fax : char[20]
+tel : char[20]

1contacts

1..* 1..*

Italian Company

+address : char[200]
+companyName : char[80]

view :
 classOf arg2 contacts

Non ISO Company

/Sales Rep

+email : char[40]
+tel : char[20]

ISO Company

+isoCert : char[10]

Contact

+email : char[40]
+tel : char[20]

-arg1 -arg2
contacts

{disjoint, complete}

0..1

1
contacts

(b) With deductions

Fig. 4. The first integration scenario.

8 P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology

/No Profit

+noProfit : boolean = true

/Profit

+noProfit : boolean = false

Public lender

+contact name : char[40]

Bank

+bankName : char[40]
+SWIFTCode : char[20]

Fair lender

+address : char[200]
+fax : char[20]
+instName : char[40]

Building society

+tel : char[20]

{disjoint}
{disjoint, complete}

Bank_s

+SWIFTCode : char[20]

Lending inst

+address : char[200]
+fax : char[20]
+instName : char[40]

(a) Without deductions

/No Profit

+noProfit : boolean = true

/Profit

+noProfit : boolean = false

Public lender

+contact name : char[40]

Bank

+bankName : char[40]
+SWIFTCode : char[20]

Fair lender

+address : char[200]
+fax : char[20]
+instName : char[40]

Building society

+tel : char[20]

{disjoint}
{disjoint, complete}

Bank_s

+SWIFTCode : char[20]

Lending inst

+address : char[200]
+fax : char[20]
+instName : char[40]

{disjoint}

(b) With deductions

Fig. 5. The second integration scenario.

(i.e., string). Therefore, such an instance can not ex-
ist, and, as a matter of fact, no instances of the two
classes can not exist at all. This first deduction by the
tool (indicated by the question marks on the corner of
the two classes) is actually a hint to the designer to ac-
tually take care of this data reconciliation problem, by,
for example, providing local conversion functions be-
tween the two attribute types. Please note that the tool
also correctly derives the fact that any object which is
instance of the Italian Company class (in any of the two
contexts/ontologies) should also be an instance of a
non ISO company. In fact, since no Italian ISO compa-
nies can exist in the current version of the scenario, any
Italian company will necessarily be a non ISO certified

company. This is made explicit by the dashed equiv-
alence link added by the tool between the Italian
Company class and the Non ISO Company class in
the lower ontology.

If we go on with the analysis of the deductions
made by the tool, we see that a stricter cardinality con-
straint has been deduced: now any Italian company can
have at most one contact person (in the sense of the
lower ontology)—this is the [0..1] cardinality con-
straint found at the right end of the contacts as-
sociation. The system has deduced this stricter con-
straint by observing that Italian companies are com-
panies, which have exactly one contact person (in the
sense of the top ontology); moreover, each Italian com-

P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology 9

pany should have contact persons (in the lower ontol-
ogy sense) among the contact persons in the top on-
tology sense. Therefore, no Italian company can have
more than one contact person (in the lower ontology
sense). The lower bound is not derived since the spe-
cialisation of the contacts association may not nec-
essarily consider all the Italian companies. So, this is
an example of a deduction which is not just an IS-A
link or an inconsistent class, which are the only kind
of deductions that the most advanced ontology design
tools (like, e.g., OILEd, or Protege) are capable of.

Another deduction which can not be done by any
other ontology design tool is the one which makes ex-
plicit a contacts association in the lower ontology
between Italian companies and sales representative,
plus the now stricter cardinality constraint stating that
each Italian company has exactly one sales represen-
tative. Please note how powerful this deduction mech-
anism is: an isolated class is automatically fully put
in context, by considering all the possible constraints
which may relate it with the other terms of the inte-
grated ontologies. As a matter of fact it can be proved
that the design tools derives all the correct constraints
(and only those).

Finally, we note that the tool derives also that sales
representative are both contact persons in the top on-
tology sense and contact persons in the lower ontology
sense.

All these deductions may help the ontology engineer
in validating the design—if the derived constraints
make sense to the engineer; they may help in suggest-
ing changes; or they may show serious but subtle con-
ceptual mistakes. The next case scenario shown in Fig-
ure 5a is an example of the latter case.

In this new integration scenario, the top ontology
describes fair lenders which are partitioned into pub-
lic lenders and building societies. Public lenders are no
profit companies, and in addition it is stated that banks
are not building societies.

In the lower less detailed ontology, we have the
generic class of lending institutions which specialises
into the bank class. We also assume that actually the
lower ontology, in spite of the fact that it uses more
generic terms, describes a world which is actually a
portion of the world described more accurately by the
top ontology.

A very natural integration between the two ontolo-
gies is pursued by the ontology engineer: she/he states
that banks of the lower ontology are among the banks
of the top ontology, and that lending institutions of the

lower ontology are fair lenders and profit companies as
defined in the top ontology.

The consequences of this integration attempt are
immediately drawn by the tool as depicted in Fig-
ure 5b. As a first (more or less obvious) deduction we
can observe that the profit and the no profit classes
are derived to be disjoint, as expected. However, it
turns out—from the big question mark at the corner of
the Bank_s class—that no banks can exist according
to the lower ontology! This is somehow unexpected,
since we thought we were playing a rather simple game
in this case. Why is this? A quick glance at the at-
tribute types shows that they are perfectly compatible
this time. The reason is the following. First of all, we
can derive that lending institutions are building soci-
ety (as pointed out by the tool); in fact, lending in-
stitutions are fair lenders, which can be either pub-
lic lenders or building societies. On the other hand
we have that lending institution are profit companies,
which are provably disjoint from public lenders. there-
fore, any lending institution has necessarily to be a
building society. At this point, we are closer to the an-
swer to our original question about the inconsistency
of the Bank_s class. Those lower ontology banks are
at the same time a kind of top ontology banks and
building societies (by transitivity). However the two
latter classes are disjoint, hence no common instance
can exist—i.e., no bank can be a lending institution ac-
cording to this integration system.

Of course, there should be something wrong the way
the two ontologies have been integrated, and this calls
for a revision of the mappings. The engineer should
either omit the mapping stating that lending institu-
tions are necessarily profit companies, or the map-
ping stating that lending institutions are necessarily
fair lenders. In both cases, the outcome will be accept-
able by the engineer, and she/he should choose the one
that best fits further analysis of the domain that she/he
may have done after this unexpected discovery.

4. The Ontology Editor

The Ontology Editor works on projects, which may
contain one or more UML class diagrams. The dia-
grams are referred as models. Multiple projects can be
opened at the same time, but objects cannot be moved
across them. Only one project is visible at a time and
the editing of each project is independent. The user can
switch between different projects using the tabs at the
top of the project area.

10 P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology

Fig. 6. The ontology design scenario in ICOM.

Figure 6 shows the main window of the Ontology
Editor editing a single model. Classes are represented
by boxes and n-ary associations by diamonds. Associa-
tions may have so-called association classes specifying
their attributes. IsA relationships are represented as ar-
rows with a disc in the middle (e.g. see MobileCall
and Call).

The tool does not implement special visual tech-
niques for handling very large ontologies. The tasks
that it supports, i.e. authoring of concept description
and structuring the ontology, are not aimed at work-
ing simultaneously with thousands of concepts. How-
ever, a set functionalities that are very useful in man-
aging such ontologies are available. First, the inter-
face is zoomable, that is, the level of detail and size
of the icons that represent the model can be smoothly
changed by pressing the right mouse button and drag-
ging left to zoom our or right to zoom in. Also, the
window can be panned by pressing the middle button
and dragging. This allows the user to focus the atten-
tion in a specific region of the ontology. There are also
two dedicated buttons for zooming: one will show the
complete graph, and the other will zoom in to show
the selected elements. Selection works by left-clicking
on icons or by left click and drag; also, there is a but-
ton for expanding the selection to all connected nodes,
which is very useful in combination with the zoom-to-
selection button. Finally, custom automatic layout al-
gorithms for ontologies are under development. These

combine known layout algorithms for drawing large
graphs, with special conventions used in ontologies,
like IsAs hierarchies are drawn top-down and associa-
tions are drawn in the middle of related concepts. New
metrics to measure the "quality" of ontology graphs
were developed with this purpose.

4.1. Editing Models

Most of the model editing is done in the project
panel, where each model in the project is displayed in
a separate model panel. In addition, two dialogues are
used to elicit additional information about model ob-
jects. The attribute domain dialogue allows the domain
of attributes to be set. The definition dialogue enables
the characterisation of a class or association by means
of a view written in the language described in the next
Section.

Objects can be created by selecting the appropri-
ate button in the toolbar, or an entry under the Dia-
gram menu, or a contextual menu in the project area.
Most object-creating operations require further inputs
to complete the operation. Usually, the user is re-
quested to select an existing object in the diagram (e.g.
during the creation of an IsA relationship). In this case,
the system will highlight only objects in the diagram
suitable for the specific operation.

All the objects of the diagram have a name. Upon
their creation the system allocates a new fresh name,

P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology 11

which can be edited by the user. To improve the iden-
tification of the nodes, when icons become smoller
because of the zoom level, all the nodes show their
name on a tool-tip when the mouse is hovering over
them. Names are scoped by the model they belong;
e.g. classes with the same name in different models are
considered different.

Metadata fields can be associated to every kind of
objects. These fields are ignored in the reasoning pro-
cess.

The creation of a new class adds a new box in the
diagram with a new default name. Every class can op-
tionally have attributes. Attributes are added and edited
by means of a specific attribute dialogue. Similar to
classes, attributes of the same name in different models
are considered different. Attributes of the same name
within the same model represent the same attribute.
For each attribute, a domain should be indicated. There
the set of possible domains is not predefined, and the
user is allowed to enter an arbitrary name. Unlike the
classes and associations, domains have a global con-
text. Therefore, domains of the same name in different
models are considered be the same.

Associations are created by default with no roles. N-
ary associations can be specified by adding new roles
to existing ones. The creation of a new association in-
troduces a corresponding association class; which can
be edited as a normal class (e.g. it can have attributes).

Adding new roles to an existing association requires
the user to select the association and a class which re-
stricts the domain of the argument of the association
corresponding to the role. Similar to class and associ-
ations names, role names have a model scope.

For example, assume there are two models M1 and
M2, each one with a binary association lives hav-
ing the roles subject and object. Note that, be-
ing association scoped over models, from the global
perspective there are two associations M1:lives and
M2:lives. Now, the modelling of the domain re-
quires that M2:lives is more specific (i.e. a sub-
set) of M1:lives. Since also role names are scoped
over each model, overall there are four different roles.
Therefore, the more specific association (M2:lives)
inherits the roles of the general one, ending up be-
ing of arity four (namely the roles M2:object,
M2:subject and M1:object, M1:subject).

Roles denote the connection of a class to an associ-
ation and it is also used to express the cardinality con-
straints of a class in an association. A role may have
two constraints: totality, or the minimum cardinality,
and uniqueness representing the maximum cardinality.

In the current version of the system, the numbers ex-
pressing cardinality are restricted to be 0 and 1. A min-
imum cardinality of 1 indicates that all instances of a
class must participate in the association at least once
(i.e. mandatory constraint). A maximum cardinality of
1 indicates that all instances of a class can only partici-
pate once in the association (i.e. functional constraint).

Within a project, equivalence and subset role map-
pings can be defined between roles in the same or dif-
ferent models. These allow a better characterisation of
the relationship between associations across different
models. In the former example, M2:lives can be set
as a binary association by saying that M1:object
contains M2:object, and that M1:subject con-
tains M2:subject.

The system enables the user to specify inheritance
relationships among classes and associations. The rela-
tionships can be arbitrary (e.g. cycles are allowed) pro-
vided that classes can only inherit from classes, and as-
sociations from associations. Formally, the inheritance
is expressed by the inclusion (subclass) constraint.

On the diagram, inheritance is specified by means
of IsA links (in the diagram indicated by arrows with
a circle in the middle) connecting nodes. IsA links
can be specified one-to-one, or many-to-one. The latter
groups together more than one (association) class and
restrict all of them to be a subclass of the link target.

The possibility of grouping more than one descen-
dant, not only provides way of visually organising the
layout of the model; but enable the user to specify
additional constraints among the (association) classes.
In particular, the covering and disjointness constraints.
The first one expresses the fact that the (association)
class is equivalent to the union of the specified descen-
dant; while the second constraints the grouped (asso-
ciation) classes to be mutually disjoint.

Note that disjointness among classes is not assumed
by default; so, in absence of a specific constraint, (as-
sociation) classes may overlap.

4.2. Inter-Model Axioms

Additional constraints among classes and associ-
ations can be expressed by means of intra- as well
as inter-model axioms. The Ontology Editor provides
four types of axioms: Node Definition, Equivalence,
Subsumption and Disjointness. As discussed in Sec-
tion 1 these constraints provide a powerful modelling
tool in the context of data integration and ontology
mapping.

12 P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology

〈class〉 ::= 〈class-name〉
| not 〈class〉
| and 〈class〉+
| or 〈class〉+
| project 〈role-name〉 〈association〉
| atleastr 〈number〉 〈role-name〉 〈association〉
| atmostr 〈number〉 〈role-name〉 〈association〉

〈association〉 ::= 〈association-name〉
| not 〈association〉
| and 〈association〉+
| or 〈association〉+
| select 〈role-name〉 〈class〉

Fig. 7. View definition language

Each class and association can be fully defined by
means of a view expression. The view expression lan-
guage is more expressive that the diagrammatic defi-
nition language, so enables the expert user to add con-
straints that cannot be expressed by the UML diagram
alone.

The adopted view language (see Figure 7) based on
the DLR description logic. A definition has a global
context, meaning it can express inter-model relation-
ships as well as intra-model relationships. The view
language includes two syntactic sorts: one for classes
and one for associations. Full boolean operators are al-
lowed, plus a selection operator (selecting tuples in an
association with a specific class type in some named
role argument) and a unary projection operator (pro-
jecting an association over a named role argument).
A generalised projection operator with cardinality re-
strictions is available as well.

Since a definition can refer to objects in different
models, a name-prefix is used in definitions to distin-
guish objects with the same name but from different
models. The name-prefix used is the model’s name fol-
lowed by a colon symbol. For example, class1 in
Model1 and class1 in Model2 would be referred
to as Model1:class1 and Model2:class1 re-
spectively.

Any two (associations) classes in any model can be
related by semantic relationships stating their equiv-
alence, subsumption, or disjointness. Creating one of
these relationships requires the user to specify source
and target node. The system prevents the creation of
a relationship between non-homogeneous nodes by re-
stricting the scope of the second node to be selected.

4.3. Exporting and Importing Projects

ICOM projects can saved and retrieved in an own
XML format, preserving the meaning of all elements
including view definitions. It is also possible to im-
port UML class diagrams saved in the XMI format.
The tool only recognises the subset of XMI determined
by classes, associations, attributes, roles and primitive
datatypes defined within an UML model. Functional
and mandatory constraints on roles are the only type
of imported constraints. Aggregation relationships in
the UML model are ignored. We are currently work-
ing on exporting projects in XMI files, but this transla-
tion would be necessarily carried out with some loss of
meaning because, for example, not all view definitions
can be expressed in XMI even with attaching OCL ex-
pressions to the model elements.

5. Automated Reasoning

Although the Ontology Editor can be used as a stan-
dalone modelling tool, exploiting its full capabilities
requires the coupling of the system with a Descrip-
tion Logic reasoner. Without such an automated rea-
soning tool the Ontology Editor would be unable to
perform deduction-complete automated reasoning over
the models. As we noted, this includes checking class
and relationship consistency, discovering implied class
and relationship inter-relations (e.g., subsumption) or
cardinality constraints, and in general discovering any
implied but originally implicit class diagram graphical
construct.

Instead of implementing its own dedicated reasoner,
the Ontology Tool can exploit any DIG enabled DL
reasoner (see [2]). Being DIG a standardised commu-
nication protocol, the user can choose the most suit-
able DL reasoner (e.g. the one used by other in-house
project), or upgrade to the latest version of the pre-
ferred reasoner without being forced to upgrade to a
different version of the Ontology Editor.

We adopted the DIG protocol rather than the OWL
API [6] because it is language independent rather than
based on a Java model. Currently we are in the process
of evaluating the migration to OWLLink [9], which is
the successor of DIG protocol for the latest OLW 2
standard.

To enable the automated deduction mechanism, the
user must specify the URL of the server where the DIG
reasoner is available. Note that it is not required that
the DIG server should be installed in the same com-

P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology 13

puter as the Ontology Editor. Once the URL to the DIG
server has been provided, the system checks the con-
nection to the reasoner to verify its availability. Upon
success, the menu item and toolbar button enabling the
automated deduction will be enabled.

The so called verification process can be computa-
tionally expensive, so it is activated only on user’s re-
quest. This process includes the following operations.
The selected project is encoded into an appropriate De-
scription Logics knowledge base and shipped to the
DIG reasoner. Each class, association in the project is
checked for satisfiability (i.e. non-emptiness). For each
class, association in the project, its equivalent peers,
and super-classes are determined. For each class-role-
association triple, the system calculates the stricter
minimum and maximum cardinality constraints. To
perform these operations, the system formulates a se-
quence of queries to be sent to the DIG reasoner. Ac-
cordingly to the received answers the Ontology Edi-
tor infers properties of the models in the project. To
perform these operations, the system formulates a se-
quence of queries to be sent to the DIG reasoner, which
is linear in the number of project elements. Accord-
ingly to the received answers the Ontology Editor in-
fers properties of the models in the project. The algo-
rithm for this inference is quadratic in the number of
concepts and roles, and linear in the number of axioms
and IsA links. Thus, the tool can reasonable manage
projects with several hundreds of elements, calling a
current state-of- the-art reasoner.

After the verification process, the system provides
the user with a visual account of the deductions by
modifying the appearance of the model diagrams in the
project. All unsatisfiable objects will appear in red in
the model diagrams. An object is unsatisfiable when
necessarily describes an empty set of tuples of ob-
jects. Additional non explicit deductions will appear in
green, to be distinguished from the user specified el-
ements of the diagrams. Semantically equivalent ob-
jects are connected with newly inserted equivalent ax-
iom links. Objects discovered to hold an inclusion rela-
tionships between them are connected with subsump-
tion axiom links. Cardinality constraints of roles for
that are more restrictive than those originally speci-
fied. Although the deductions are displayed on the ac-
tual diagrams, it is up to the user to decide whether
they should be permanently added to the models or dis-
carded. The rational behind this behaviour is that the
automated reasoning process may detect unwanted de-
ductions caused by a wrong modelling of the domain.
In this case the user should correct the project before

any subsequent editing. Another reason is that, in spite
of the fact that only the non-trivial deductions are pre-
sented, the user is satisfied by the fact that they are im-
plicit without the need of having them explicitly as-
serted.

The user can discard the deductions and the entire
project will be returned to its original state (and any
information about unsatisfiability will be discarded).
Editing one of the models in the project will also dis-
card the deductions before the editing is carried out.
Alternatively, the equivalence, subsumption associa-
tion, and role cardinality deductions can be added per-
manently to the project by committing them.

6. Conclusions and Future Works

In this paper we presented ICOM, an advanced con-
ceptual modelling tool grounded on more than ten
years of research on the use of automated reasoning
to support the development and integration of ontolo-
gies. ICOM employes a diagrammatic based language
to represent most of the constructs used in ontology
design; although it enables the use of non graphical on-
tology languages, experience with users demonstrates
that the design of the diagrammatic language is suf-
ficiently expressive to describe rich domains. More-
over, deductions are expressed within the same dia-
grammatic language; providing a uniform view over
design and analysis of models.

By means of use cases we demonstrated the impor-
tance of exploiting basic reasoning tasks (as subsump-
tion) in order to provide richer information on ontolo-
gies. This is a crucial step towards guaranteeing the
quality of the ontologies designed using a tool like
ICOM.

The research and development of ICOM continues
on two main tracks: from one side we are improv-
ing the modelling workflow by considering alternative
modelling languages and reasoning services; while on
the other hand we are enhancing the user experience
by improving the graphical user interface and the in-
teroperability.

We are currently considering the adoption of mod-
elling features from ORM [5] conceptual modelling
methodology and representation. Its adoption would
have the advantage of leveraging the vast research
which has been carried on supporting the user in the
modelling tasks; including the integration of natural
language generation. The use of ORM modelling style
would require also a redesign of the reasoning tasks in

14 P. R. Fillottrani, E. Franconi, S. Tessaris / The ICOM 3.0 Intelligent Conceptual Modelling tool and methodology

order to align the inferences to the new graphical rep-
resentation.

On the interface we are improving the automatic
layout algorithms and working on the support of undo
actions. We also plan to include a role browser tab to
show the role hierarchy in the same style of the class
browser. Moreover, we are improving the interoper-
ability with other tools by tackling the import and ex-
port compatibility with XMI and OWL.

References

[1] Sean Bechhofer, Ian Horrocks, Carole A. Goble, and Robert
Stevens. OilEd: a reason-able ontology editor for the seman-
tic web. In Franz Baader, Gerhard Brewka, and Thomas Eiter,
editors, Proceedings of KI2001, Joint German/Austrian confer-
ence on Artificial Intelligence, volume 2174 of Lecture Notes in
Computer Science, pages 396–408. Springer, 2001.

[2] Sean Bechhofer, Ralf Möller, and Peter Crowther. The DIG de-
scription logic interface. In Diego Calvanese, Giuseppe De Gi-
acomo, and Enrico Franconi, editors, Proceedings of the 2003
International Workshop on Description Logics (DL2003), vol-
ume 81 of CEUR Workshop Proceedings. CEUR-WS.org, 2003.

[3] Pablo R. Fillottrani, Enrico Franconi, and Sergio Tessaris. The
new ICOM ontology editor. In Bijan Parsia, Ulrike Sattler,
and David Toman, editors, Proceedings of the 2006 Interna-
tional Workshop on Description Logics (DL2006), volume 189
of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

[4] Enrico Franconi and Gary Ng. The i.com tool for intelligent con-
ceptual modeling. In Mokrane Bouzeghoub, Matthias Klusch,
Werner Nutt, and Ulrike Sattler, editors, Proceedings of the

7th International Workshop on Knowledge Representation meets
Databases (KRDB 2000), volume 29 of CEUR Workshop Pro-
ceedings, pages 45–53. CEUR-WS.org, 2000.

[5] T.A. Halpin, A.J. Morgan, and T. Morgan. Information modeling
and relational databases. Morgan Kaufmann series in data man-
agement systems. Elsevier/Morgan Kaufman Publishers, 2008.

[6] Matthew Horridge, Sean Bechhofer, and Olaf Noppens. Igniting
the OWL 1.1 touch paper: The OWL API. In Christine Golbre-
ich, Aditya Kalyanpur, and Bijan Parsia, editors, Proceedings
of the OWLED 2007 Workshop on OWL: Experiences and Di-
rections, volume 258 of CEUR Workshop Proceedings. CEUR-
WS.org, 2007.

[7] Matthias Jarke, Christoph Quix, Diego Calvanese, Maurizio
Lenzerini, Enrico Franconi, Spyros Ligoudistianos, Panos Vas-
siliadis, and Yannis Vassiliou. Concept based design of data
warehouses: The DWQ demonstrators. In Weidong Chen, Jef-
frey F. Naughton, and Philip A. Bernstein, editors, Proceedings
of the 2000 ACM SIGMOD International Conference on Man-
agement of Data, page 591. ACM, 2000.

[8] Holger Knublauch, Ray W. Fergerson, Natalya Fridman Noy,
and Mark A. Musen. The protégé OWL plugin: An open devel-
opment environment for semantic web applications. In Sheila A.
McIlraith, Dimitris Plexousakis, and Frank van Harmelen, edi-
tors, Proceedings of ISWC 2004: Third International Semantic
Web Conference, volume 3298 of Lecture Notes in Computer
Science, pages 229–243. Springer, 2004.

[9] Thorsten Liebig, Marko Luther, Olaf Noppens, Mariano Ro-
driguez, Diego Calvanese, Michael Wessel, Matthew Horridge,
Sean Bechhofer, Dmitry Tsarkov, and Evren Sirin. OWLlink:
DIG for OWL 2. In Catherine Dolbear, Alan Ruttenberg, and Ul-
rike Sattler, editors, Proceedings of the OWLED 2008 Workshop
on OWL: Experiences and Directions, volume 432 of CEUR
Workshop Proceedings. CEUR-WS.org, 2008.

